Global existence of weak solutions to some micro - macro models
نویسنده
چکیده
We prove global existence of weak solutions for the co-rotational FENE dumbbell model and the Doi model also called the Rod model. The proof is based on propagation of compactness, namely if we take a sequence of weak solutions which converges weakly and such that the initial data converges strongly then the weak limit is also a solution. To cite this article: A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).
منابع مشابه
Global Existence of Weak Solutions to Macroscopic Models of Polymeric Flows
One of the most classical closures approximation of the FENE model of polymeric flows is the one proposed by Peterlin, namely the FENE-P model. We prove global existence of weak solutions to the FENE-P model. The proof is based on the propagation of some defect measures that control the lack of strong convergence in an approximating sequence. Using a similar argument, we also prove global exist...
متن کاملExistence of Weak Solutions to Some Vortex Density Models
We study the weak solutions to equations arising in the modeling of vortex motions in superfluids such as superconductors. The global existence of measure-valued solutions is established with a bounded Radon measure as initial data. Moreover, we get a local space-time Lq estimate for the continuous part of the solution, and we prove the global existence of a distributional weak solution for a p...
متن کاملExistence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملA novel existence and uniqueness theorem for solutions to FDEs driven by Lius process with weak Lipschitz coefficients
This paper we investigate the existence and uniqueness of solutions to fuzzydierential equations driven by Liu's process. For this, it is necessary to provideand prove a new existence and uniqueness theorem for fuzzy dierential equationsunder weak Lipschitz condition. Then the results allows us to considerand analyze solutions to a wide range of nonlinear fuzzy dierential equationsdriven by Liu...
متن کاملOn Landau-lifshitz Equations of No-exchange Energy Models in Ferromagnetics
In this paper, we study Landau-Lifshitz equations of ferromagnetism with a total energy that does not include a so-called exchange energy. Many problems, including existence, stability, regularity and asymptotic behaviors, have been extensively studied for such equations of models with the exchange energy. Problems turn out quite different and challenging for Landau-Lifshitz equations of no-exc...
متن کامل